

Akihiko Shimpo Japan Meteorological Agency

Seasonal Prediction Modeling Team: H. Kamahori, R. Kumabe, I. Ishikawa, T. Tokuhiro, S. Yabu, A. Shimpo, H. Sato, T. Motoyama, Y. Naruse, Y. Takaya, T. Soga, H. Mori

3rd WCRP International Conference on Reanalysis

- When we develop a numerical model, mean error (=>model's climatology) and scores (RMSE, ACOR, etc.) are estimated mainly to know the model's performance (skill).
- In addition, it is also very important to know how well atmospheric phenomena are seen realistically in the model.
 - Teleconnection, typhoon, blocking high, etc.
- As previous studies showed, synoptic-scale baroclinic eddies along 'storm tracks' play an important role in the climate system by transporting heat, moisture and angular momentum.

- To examine the characteristics of storm tracks in JRA-25.
 - Similar to those seen in previous studies ?
- To examine the characteristics of storm tracks in JMA's seasonal forecast model.
- In the view of seasonal change of storm tracks.
- In this study, storm track is defined as a region of eddies associated with baroclinic waves extracted using high-pass filter.
 - It may be helpful to examine the characteristics of an individual cyclone activity.

- Motivation
- Purpose
- Data
 - Analysis: JRA-25
 - Forecast: JMA's seasonal forecast model
- Analysis method
- Results
 - Analysis
 - Forecast
- Summary

Analysis: JRA-25 (+JCDAS)

2.5°x2.5°grids, 6 hourly, 1979 ~ present

- Forecast: JMA's seasonal forecast model
 - T_L95L40 (~180km horizontal res., model top=0.4hPa)
 2.5°x2.5°grids for verification, 6 hourly
 - Initial condition: JRA-25
 - Two-tier method -> <u>NOT "A.-O. coupled model"</u>
- Setting of hindcast (-> SVS-LRF)
 - Initial date: 1984 ~ 2005 (22yrs), 10th of every month In this study, results from 10th of November are used.
 - Ensemble size: 11, Forecast period: 210 days.
- Target: 84/85 ~ 05/06 (22 winters) in NH

3rd WCRP International Conference on Reanalysis

JRA-25 and JCDAS, which are real-time operational analysis products using the same assimilation system as JRA-25, are used as <u>a basis for validation</u> of the JMA's seasonal forecast model.

Envelope function: amplitude of eddies

(Nakamura and Wallace ,1990)

* — : low-pass filter

* (sin(45°N)/sin(lat)): -> stream function

- -> 31-day running mean -> climatological mean
 Only data at 12Z are used as daily data.
- 300/850 hPa as upper/lower troposphere

sin(lat)

3rd WCRP International Conference on Reanalysis

 $Ze = \sqrt{2 \times \overline{Z'^2}} \times \frac{\sin(45^\circ N)}{2}$

Analysis method (2)

Axis of eddies

- An axis of a storm track is defined daily (12Z) at each meridian in Ze at 300hPa (15°N~75°N).
- The quantities along the axis are defined as 10°-latitudinal band averages.

Contour: (60), 90, 120,...

Extended EP-flux : group velocity of propagation

$$\mathbf{E}_{\mathrm{H}} = \left(\frac{\overline{v'^{2}} - \overline{u'^{2}}}{2}, -\overline{u'v'}\right)^{\mathrm{T}} \cos(lat)$$
(Trenberth, 1986)

• Poleward heat flux $\overline{v'T'}$

3rd WCRP International Conference on Reanalysis

Analysis: average in Jan.

• The distributions of storm tracks are in agreement with previous studies using other analysis or observations.

Analysis: seasonal change

Analysis: scatter diagram

Anal vs. Fcst: average in Jan.(1)

 JMA's seasonal forecast model represent distribution of storm tracks well, however, there are some differences.

Anal vs. Fcst: average in Jan.(2)

JMA's seasonal forecast model represent distribution of storm tracks well, however, there are some differences.

Anal vs. Fcst: seasonal change

- In forecast,
 - Envelope function is smaller.
 - Mean westerly wind speed is larger.
 - Storm track shifts southward
 - Over Atlantic, seasonal change of envelope function becomes smaller.

3rd WCRP International Conference on Reanalysis

Anal vs. Fcst: scatter diagram

The distributions of scatters shift lower values of envelope function at each mean westerly wind speed.

 It suggests that synoptic-scale baroclinic eddy might difficult to grow in JMA's seasonal forecast model.

Anal vs. Fcst: over Eurasia

The eddy propagation is observed in high latitude mainly over Eurasia in JRA-25, while it is in low latitude in forecast.

This difference may influence not only the storm track activity over pacific but also the mean westerly wind fields locally.

3rd WCRP International Conference on Reanalysis

- In the view of seasonal change, characteristics of storm tracks in JRA-25 are similar to previous studies using other analysis data sets.
- Roughly estimated, seasonal change of storm tracks in JMA's seasonal forecast model is in agreement with that in JRA-25.
- However, some differences are seen.
 Smaller amplitudes, shift southward, etc.
- Reasons of these differences ?
 -> More examinations are needed.
- Next Issue: Interannual variability, predictability of storm track activity (strength, position, etc.), relation to individual cyclone activity, in CGCM ?

Thanks !

"Harerun", JMA's mascot

3rd WCRP International Conference on Reanalysis